
So�ware Development (cs2500)

Lecture 27: Recursion

M.R.C. van Dongen

December 6, 2010

Contents
1 Recursion 2

1.1 De�nition . 2

1.2 Examples . 2

1.3 Potential Problems . 3

2 Factorial Computation 4

3 Fibonacci Numbers 6
3.1 A Fibonacci Problem . 6

3.2 Fibonacci’s Solution . 7

3.3 �e Fibonacci Sequence . 7

3.4 Tracing the Calls . 8

4 Towers of Hanoi 8

5 Binary Search 11
5.1 �e Basic Idea . 11

5.2 �e Algorithm . 12

5.3 Implementation in Java . 13

5.4 Comparable Interface . 13

6 Quicksort 14
6.1 Main Ideas . 14

6.2 Implementation in Java . 15

6.3 A Call Trace Study . 16

7 For Wednesday 16

1

1 Recursion
�is section studies recursion, one of the most important concepts in computer science.

�e following is what Merriam Webster’s on-line dictionary says about recursion.

Function: noun

Etymology: Late Latin recursion-, recursio, from recurrere

Date: 1616

1. return

2. the determination of a succession of elements (as numbers or functions) by operation on one

or more preceding elements according to a rule or formula involving a �nite number of steps

3. a computer programming technique involving the use of a procedure, subroutine, function,

or algorithm that calls itself one or more times until a speci�ed condition is met at which

time the rest of each repetition is processed from the last one called to the �rst

Many concepts in computer science and mathematics are de�ned or computed recursively, i.e. using

recursion. �e idea is to de�ne complicated concept in terms of itself.

1.1 De�nition
�e following are the main components of a recursive method:

Base Case: Simple computation. We know how to do it without the need to call the method itself.

Recursive Computation: Complicated computation involving: simple computations and one or several

computation(s) of “lower order.”

1.2 Examples
A typical example of a recursive algorithm is dictionary search. Here we’re looking up the meaning of a

word in a dictionary. For simplicity we shall assume that the dictionary lists all possible words and has

one word per page.

To search the word given n pages do the following:

• If there’s only one page (n = 1): We’ve found the word.

• Otherwise (n > 1):

– Find the page in the “middle.”

– Read the word on the middle page.

– If that word is our word: We’ve found the word.

– If our word is smaller: search to the le�.

2

– Otherwise: search to the right.

Figure 1 depicts a picture of a Dutch add for a cocoa brand called Droste. It displays a nurse carrying

a serving tray with a cup of hot chocolate and a box of Droste cocoa depicting the same image. �e image

on the box is a smaller version of the whole image: recursion.

Figure 1: A recursive cocoa add.

Figure 2 shows that an old Tayto bag which uses a similar idea.

1.3 Potential Problems
Recursive computations involve themselves. If we’re not careful we may get an in�nite chain of computa-

tions. For example, we may be computing what’s on Box 1 with Box 2 on it, which involves computing

what’s on Box 2 with Box 3 on it, which involves computing what’s on Box 3 with Box 4 on it, which

involves …. Each recursive computation should eventually terminate. We need to force some condition

which guarantees that each recursive computation eventually reaches a base case condition.

�e following helps us guarantee termination:

• Each computation should have a size which should be a non-negative integer.

• �e size should depend on one or several method parameters.

• Each base-case computation corresponds to a small �xed size (usually 0 or 1). Di�erent base-cases

may correspond to di�erent sizes.

3

Figure 2: A recursive Tayto add.

• Each recursive sub-computation which is part of a computation of size n should have a size which

is less than n.

• If these conditions are met then termination is guaranteed and it can be proved using natural

induction.

Again consider the dictionary search algorithm. It makes sense to de�ne the size of the computation

that looks up our word as the number of pages that are le�.

�e following argument proves that the algorithm terminates. Let’s call the top computation C0. Let

C1 be the recursive computation of C0, let C2 be the recursive computation of C1, and so on. Finally, let

Si be the size of Ci . By nature of the algorithm a recursive search Ci+1 has fewer pages than the number

of pages of Ci . �erefore, Si > Si+1 for any computation Ci that has a recursive sub-computation. For

sake of the argument, let’s assume there is an in�nite chain of computations C0, C1, C2, …. �en we have

an in�nite chain of integers S0 > S1 > S2 > · · · . But this is impossible since Si ≥ 0, for all i . �erefore

our assumption that there is an in�nite chain of computations is false.

Note that it is crucial that the sizes are integers. For example, a chain of the following form does exist:

1,1/2,1/4,1/8,

�e next few sections will study some more speci�c examples of recursion.

2 Factorial Computation
�is section studies the application of recursion to the computation of factorials. Before we start let’s

recall the de�nition of factorials.

4

Let n be a positive integer. �e factorial of n, denoted n!, is de�ned as follows:

n!= 1× 2× · · ·× (n− 1)× n .

Using the product notation we may write this as follows:

n!=
n
∏

i=1

i .

Usually, you compute factorials using a for statement:

public static int factorial(int n) {
int product = 1;
for (int i = 1; i != n; i ++) {

product = product * i;
}
return product;

}

Java

We can also compute factorials using recursion. �e following is the key to the solution:

Base Case: Clearly 1!= 1.
1

�is is the base case.

Recursion: �e recursion may be found by noticing that

n
∏

i=1

i = n×
n−1
∏

i=1

i .

�is gives us

n!= (n− 1)!× n .
Note that this is clealy a recursive de�nition: the operator ! at the le� hand side is de�ned in terms

of itself since it also occurs in the right hand side.

�e following socalled case-based de�nition combines the base case and the recursive case in a single

formula.

n!=
¨

1 if n = 1 ;
(n− 1)!× n if n > 1 .

Given this de�nition we almost get our Java for free:

public static int factorial(int n) {
if (n == 1) {

return 1; // Base Case
} else {

return factorial(n - 1) * n; // Recursion
}

}

Java

1
Actually, 0!= 1 is also true.

5

Note that the name of the previous method does not start with a verb. Strictly speaking this violates

our Java naming conventions. However, the name is still quite acceptable because ‘factorial(n)’ may

be pronounced ‘factorial of n’, which is exactly what the method computes. As a matter of fact, many

methods in the Math class have similar names: sin, cos, min, max, ….

3 Fibonacci Numbers
�is section studies another application of recursion. �is time the application is a problem involving

rabbits. �e problem was invented by the famous Italian mathematician Fibonacci.

Figure 3: Leonardo of Pisa (Fibonacci).

�e following are some basic facts.

• Born: about 1175 ad.

• Died: 1250 ad.

• Famous mathematician.

• Introduced the Decimal System into Europe.

• Well known for many of his problems.

3.1 A Fibonacci Problem
One of Fibonacci’s problems is the following:

6

A pair of rabbits are put in a �eld and, if rabbits take a month to become mature and

then produce a new pair every month a�er that, how many pairs will there be in twelve

months time?

He assumes the rabbits do not escape and none die.

3.2 Fibonacci’s Solution
Fibonacci’s problem gives rise to a famous sequence of numbers which are now called the Fibonacci

Numbers. Table 1 lists the �rst few Fibonacci numbers. In this table the n-th Fibonacci number is

denoted Fn . Remember that Fn is the number of pairs of rabbits, n months a�er a single pair starts

breeding (and newly born bunnies start getting o�spring when they are two months old).

Month (n) Pairs of Rabbits

Babies Mature Total (Fn)

0 1 0 1
1 0 1 1
2 1 1 2
3 1 2 3
4 2 3 5
5 3 5 8

Table 1: First Fibonacci numbers.

3.3 �e Fibonacci Sequence
Fibonacci’s solution involves the series of numbers:

1,1,2,3,5,8,13,21,

Given the �rst two numbers we can compute each of the remaining numbers. �e following shows how:

Fn =







1 if n = 0 ;
1 if n = 1 ;
Fn−1+ Fn−2 if n > 1 .

Given the case-based de�nition we can translate it into Java as follows:

public static int fibonacci(int n) {
if (n <= 1) { /* Base Case */

return 1;
} else { /* Recursion */

return fibonacci(n - 1) + fibonacci(n - 2);
}

}

Java

7

3.4 Tracing the Calls
It is instructive to study an example of an application of the fibonaccimethod to a small integer argument.

Figure 4 depicts a socalled call trace of the call fibonacci(4). for simplicty the tree uses f (n) for

fibonacci(n). �e node at the root of the tree corresponds to the top-level call f (5). �e nodes at

the leaf positions correspond to the base cases: f (n), where n ≤ 1. �e other nodes correspond to calls

which require recursive method calls. Each of them has two children. For any such node, f (n) = Fn , the

le� child corresponds to the call f (n− 1) and the right child corresponds to the call f (n− 2).

f (5) = 8

f (4) = 5

f (3) = 3

f (2) = 2

f (1) = 1 f (0) = 1

f (1) = 1

f (2) = 2

f (1) = 1 f (0) = 1

f (3) = 3

f (2) = 2

f (1) = 1 f (0) = 1

f (1) = 1

Figure 4: Call trace of f (5), where f is given by f (n) = 1 if n ≤ 1 and f (n) = f (n− 1)+ f (n− 2) if

1< n.

4 Towers of Hanoi
Our next problem originates from recreational mathematics. �e problem was invented in 1883 by the

French mathematician Edouard Lucas [Graham et al., 1989, Chapter 1]. It is a textbook example of

recursive problem solving. We’re given a tower of 8 disks and three pegs: A, B , and C . Each disk has a

hole in the centre. Initially, the disks are stacked in decreasing size on Peg A. �e objective is to transfer

the stack to a di�erent peg, but

• we’re only allowed to stack disks on pegs,

• we’re only allowed to move one disk at a time, and

• we can only stack a smaller disk on top of a larger disk.

8

A B C

Figure 5: Initial state of the Towers of Hanoi.

Figure 5 depicts the initial situation.

When solving a problem like this, try solving a few small instances by hand. If you’re lucky you may

spot a pattern. Let’s consider the 3-disk version of the general problem. Initially, the disks were stacked

on Peg A. In the �nal state, the disks were stacked on Peg C . Figure 6 depicts one of the intermediate

states. We arrived at this state by the following moves: A→ B , A→ C , B → C , and A→ B . In the

A B C

Figure 6: Intermediate state of the 3-disk version of the Towers of Hanoi.

intermediate state the largest disk is in its �nal position. �e purpose in the intermediate state is to move

the disks from Peg C to Peg B . But this is just the 2-disk version with C as initial and B as destination

peg. We know how to solve the 2-disk version. How did we arrive at the intermediate state? If we can

solve this sub-problem then we can solve the whole problem:

1. Start at initial state.

2. Solve the sub-problem to arrive at the intermediate state.

3. Use recursion to go from the intermediate to the target state.

So, how did we get at the intermediate state?

1. We started with all disks stacked on Peg A.

9

2. We moved all disks except for the largest one from A to C . But this is just the 2-disk version with

A as the initial and C as the destination disk.

3. We moved the largest disk to Peg B .

Let’s see if we can generalise this to a solution strategy for the n disk version. We already noticed that

in the general version the source and destination pegs may be di�erent. We have to take this into account.

Base case: If n = 1:

1. Move disk n to target peg.

Recursion: If n > 1:

1. Move disks 1, …, n− 1 from source to intermediate peg.

2. Move disk n to target peg.
3. Move disks 1, …, n− 1 from intermediate to target peg.

We could combine the two cases and have an if statement with two clauses: the if clause deals with

the base-case and the else clause deals with the recursion. However, there is a more elegant solution

which has a di�erent base-case: if there are no disks then do nothing. Using this base-case we may express

the algorithm more elegantly:

• If n ≥ 1 then

1. Move disks 1, …, n− 1 from source to intermediate peg.

2. Move disk n to target disk.

3. Move disks 1, …, n− 1 from intermediate to target peg.

Exercise 1. Prove that the algorithm terminates.

�e Java almost comes for free. For ease of use we provide a wrapper method void hanoi(int n)
which moves n disks from the �rst to the second peg. To carry out this task the wrapper method calls the

more complex helper method void hanoi(int n, int source, int target).

10

/**
* @param n Number of disks.
* @param source The source peg: should be 0, 1, or 2.
* @param target The target peg: should be 0, 1, or 2.
* <PAR> {@code source} and {@code target} should be different.</PAR>
*/

private static
void hanoi(int n, int source, int target) {

if (n >= 1) {
// Compute the number of the intermediate peg:
final int intermediate = 3 - source - target;
hanoi(n - 1, source, intermediate);
moveDisk(n, source, target);
hanoi(n - 1, intermediate, target);

}
}

public static
void hanoi(int n) {

// move n disks from Peg 0 to Peg 1.
hanoi(n, 0, 1);

}

Java

�e method moveDisk just prints some text indicating which disk is moved from which peg to which

other peg. Before we study this method, it is interesting to study the technique which computes the

intermediate disk as a function of the two remaining disk numbers. �is trick works because 3 is the sum

of all disk numbers. Since 3 is the sum of all disk numbers, 3= source+ intermediate+ target, we

should get intermediate if we subtract source and target from 3.
2

�is trick saves an extra parameter

at the expense of a small computation.

�e following is the method moveDisk.

private static void moveDisk(int disk, int source, int target) {
final String pegNames[] = { "A", "B", "C" };
System.out.println("Move disk " + disk

+ " from " + pegNames[source]
+ " to " + pegNames[target]);

}

Java

5 Binary Search
Binary search is an algorithm which(1) determines whether a given item is in a sorted list, and (2) if it

is, returns the position of that element in the list. It works like the “dictionary search” algorithm. It

repeatedly halves the number of elements needed to be checked. It is a typical case of a divide and conquer
algorithm. Because of the halving it is sometimes called dichotomic. It requires a (worst-case) time which

is logarithmic in the size of the input list.

5.1 �e Basic Idea
Before studying the algorithm let’s de�ne its main task.

2
We’ve seen this trick before when we were �ipping bits: 1− 1→ 0, and 1− 0→ 1. Here the things are 0 and 1. �e

number 1 also plays the role of the sum.

11

Input: �e input of the algorithm consists of (1) an item and (2) a list of items which is sorted in non-

decreasing order. For simplicity we’ll assume the items in the list are unique. With this assumption,

the list is now sorted in increasing order.

Output: �e output of the algorithm is an int. �e output depends on one of the following cases.

Item is in list: If the item is in the list, the algorithm returns the index of the item in the list.

Item is not in list: If the item is not in the list the algorithms returns a negative number.

For simplicity we’ll assume that all items are ints. Furthermore, we’ll assume that the list is presented

as an array. At the end of this section we shall study a version of the algorithm that works for arrays

consisting of Comparable objects.

5.2 �e Algorithm
�e following is the algorithm. �e input item is given by an int called item and the list of items is given

by an int array called items. In addition we’re given two ints called lo and hi. �e purpose of these ints

is to specify the range in items which the algorithm is supposed to search. Speci�cally, the algorithm’s

range is restricted to the indices which are not below lo and do not exceed hi.

lo > hi: Here there are no more valid index positions le�. We terminate by returning -1.

lo <= hi: Here we still don’t know if item is in items[lo .. hi].

1. Determine “the” middle index. We implement this as mid = (lo + hi) / 2. Unfortunately,

this is not correct due to over�ow. You can �x this by implementing it as ‘mid = lo + (hi -
lo) / 2’ or as ‘mid = (hi + lo) >>> 1’.

3
For simplicity we shall assume that mid = (lo +

hi) / 2 is correct.

2. Compare item and items[mid]. �ere are three cases:

• item == items[mid]: If this happens we’ve found the location of item in items and

we return mid.

• item < items[mid]: If this happens item < items[index] for all indices index
such that mid <= index. �e reason for this follows from the fact that items is sorted

in increasing order. E�ectively, this rules out the indices index where mid <= index. If

item is among index[lo .. hi] then this can only be for index positions which

are greater than or equal to lo and less than mid. �is justi�es the decision to recurse

and return binSearch(item, items, lo, mid - 1).

• item > items[mid]: If this happens item > items[index] for all indices index
such that index <= mid. Here we recurse by returning binSearch(item, items, mid
+ 1, hi).

3
�e operator >>> is a so called shi� operator. �e operation lhs >>> bits shi�s the bits of lhs by bits bits to the right.

12

5.3 Implementation in Java

�e following is a possible implementation in Java.

public static
int binSearch(int item, int[] items) {

return binSearch(item, items, 0, items.length - 1);
}

public static
int binSearch(int item, int[] items, int lo, int hi) {

if (lo > hi) {
return - 1;

} else {
int mid = (lo + hi) / 2;
if (item == items[mid]) {

return mid;
} else if (item < items[mid]) {

return binSearch(item, items, lo, mid - 1);
} else {

return binSearch(item, items, mid + 1, hi);
}

}
}

Java

5.4 Comparable Interface
We’ve seen how to use binary search for ints. We should be able to generalise it for other comparable
things. In the remainder of this section we shall study how to generalise the algorithm. �e key to the

idea is implementing the Comparable interface.

Implementing an interface is almost the same as extending a class.
4

For example, if class B implements

interface A, then B behaves as a “subclass” of A. A class implements the Comparable interface if it overrides

the following method:

int compareTo(Object that) �e method should return a negative value if this is smaller than

that, a positive value if this is greater than that, and zero otherwise.

Many classes implement the Comparable interface: Integer, Double, String, ….

�e following implementation of the binary search algorithm works for arrays of Comparable objects.

Note that we’re using the method compareTo() to get an int which we can use to compare item and

items[mid].

4
We shall study interfaces in a few lectures time.

13

public static
int binSearch(Comparable item, Comparable[] items, int lo, int hi) {

if (lo > hi) {
return - 1;

} else {
int mid = (lo + hi) / 2;
int compare = item.compareTo(items[mid]);
if (compare == 0) {

return mid;
} else if (compare < 0) {

return binSearch(item, items, lo, mid - 1);
} else {

return binSearch(item, items, mid + 1, hi);
}

}
}

Java

�e implementation of binSearch is not ideal. For example, the method may cause a run time error

when item is an Integer and items is an array of String. When we shall study generic types we shall

learn how to implement the method properly. Still the implementation works if item and the members

of items are “compatible”, for example, if they are of the same class.

6 Quicksort
Sorting algorithms are a very important class of algorithms. Sorting e�ciently is crucial to many applica-

tions. �e quicksort algorithm is one of the most commonly used sorting algorithms. Given n items

its expected number of comparisons is O(n log n). Here the notation O(f (n))means ‘proportional

to f (n)’, so the expected number of comparisons required by quicksort is proportional to n log n.

However, despite the O(n log n) (expected) comparisons for random input, there is input for which the

algorithm requires O(n2) comparisons. �ese cases occur when the input data are almost sorted or almost

reversed sorted. Even for relatively small n, say n = 1010
, algorithms with a O(n2) time complexity are

prohibitive because they will (virtually) never terminate.

One of the advantages of quicksort is that if the input is provided as an array then the sorting can be

carried out in-situ. Here sorting the array in-situ means sorting the array without the need of extra space

(except for a constant number of variables). �e algorithm was invented by C. A. R. Hoare in 1962.

For simplicity we shall study the version for sorting int arrays. �e class Arrays de�nes several

quicksort-based sorting methods.

6.1 Main Ideas
�e following are the main ideas behind quicksort. In the following, n is the number of items which

need to be sorted.

Base case: If n ≤ 1 then the input is sorted.

Recursion: If n > 1:

14

1. Select any item from the input. �is item is usually called the pivot. Ideally the pivot should

be an item from the array such that about half the remaining items are smaller than or or

equal to the pivot.

2. Partition the remaining items into two classes, L and G. L are the items less than or equal to

the pivot. G are the remaining items.

3. �e members in L should end up before the members of G.

4. A�er the partitioning, the pivot is put between the members of L and G.

5. Recursively sort L and G.

Exercise 2. Prove that quicksort terminates.

6.2 Implementation in Java

�e following is the algorithm, which acts as a wrapper for the core algorithm. �e core algorithm is

parameterised over the start and end indices. Providing a wrapper function like the one below is a proper

thing to do: you don’t want to have the programmer provide the same lower index 0 and upper index

items.length - 1 each time the algorithm is used.

public static
void qsort(int[] items) {

qsort(items, 0, items.length - 1);
}

Java

�e core algorithm is as follows.

// Sorts items[lo .. hi] in non-descending order.
private static
void qsort(int[] items, int lo, int hi) {

if (hi - lo >= 1) {
int pivotPosition = partition(items, lo, hi);
qsort(items, lo, pivotPosition - 1);
qsort(items, pivotPosition + 1, hi);

}
}

Java

�e following is the partition algorithm. �e pivot can be any member of the input array. Ideally it

should be any number which ends up in the middle of the sorted array. Unfortunately, there is no cheap

way to determine such a member. A reasonable choice is to select the number in the centre.

15

private static
int partition(int[] items, int lo, int hi) {

int destination = lo;
swop(items, (hi + lo) >>> 1, hi);
// The pivot is now stored in items[hi].
for (int index = lo; index != hi; index ++) {

if (items[hi] >= items[index]) {
// Move current item to start.
swop(items, destination, index);
destination ++;

}
// items[i] <= items[hi] if lo <= i < destination.
// items[i] > items[hi] if destination <= i <= index.

}
// items[i] <= items[hi] if lo <= i < destination.
// items[i] > items[hi] if destination <= i < hi.
swop(items, destination, hi);
// items[i] <= items[destination] if lo <= i <= destination.
// items[i] > items[destination] if destination < i <= hi.
return destination;

}

Java

�e brilliant aspect of the algorithm is that we temporarily swop the pivot with the item at position

hi. We then partition items[lo .. hi - 1] such that all items less than or equal to the pivot are at

the start and the remaining items at the end. While doing this, we compute the position where the pivot

will end up upon return. �is position is called destination. Initially it is set to lo. A�er the partitioning

of items[lo .. hi - 1] we swop the items at positions destination and hi. We �nish by returning

the position of the pivot.

�e implementation of the helper method swop is le� as an exercise.

6.3 A Call Trace Study
Figure 7 depicts a call trace of qsort. �e input of the method is the array {2,5,4,1,3,8}. �e top-

level node corresponds to the call qsort(items, 0, 5), where items is the input array. Each node

corresponds to a call of the form qsort(items, lo, hi). �e value of items at the moment of the

call is listed as part of the nodes. �e values of lo and hi are listed as subscripts of the array items. �e

value of lo is listed �rst. �e le� subtree of a node corresponds to the �rst recursive call and the right

subtree to the second.

Exercise 3. Carry out a simulation of the algorithm partition for each of the internal nodes (the ones with
children). You should be able to check the result of your computation by looking at the node’s le� (or right)
child node.

7 For Wednesday
For Wednesday:

• Study the lecture notes.

• Carry out Exercise 3.

16

{2,5,4,1,3,8}0,5

{2,1,3,4,8,5}0,2

{1,3,2,4,8,5}0,−1 {1,3,2,4,8,5}1,2

{1,2,3,4,8,5}1,1{1,2,3,4,8,5}3,2

{1,2,3,4,8,5}4,5

{1,2,3,4,5,8}4,4 {1,2,3,4,5,8}6,5

Figure 7: Call trace of qsort.

References
[Graham et al., 1989] R.L. Graham, D.E. Knuth, and O. Patashnik. Concrete Mathematics: A Founda-

tion for Computer Science. Addison-Wesley, 1989.

17

	Recursion
	Definition
	Examples
	Potential Problems

	Factorial Computation
	Fibonacci Numbers
	A Fibonacci Problem
	Fibonacci's Solution
	The Fibonacci Sequence
	Tracing the Calls

	Towers of Hanoi
	Binary Search
	The Basic Idea
	The Algorithm
	Implementation in Java
	Comparable Interface

	Quicksort
	Main Ideas
	Implementation in Java
	A Call Trace Study

	For Wednesday

